	Introduction to Electrical E	ngineering		
Course Code:	BESCK104B	CIE Marks	50	
Course Type (Theory/Practical	Theory	SEE Marks	50	
/Integrated)		Total Marks	100	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	Exam Hours	03	
Total Hours of Pedagogy	40 hours	Credits	03	
 To explain the behavior of To explain the construction motors. To introduce concepts of ci To explain electric power generation of the personal safety measures. 	rcuit protecting devices and ear	e circuits. ners, DC generators and moto		
Teaching-Learning Process These are sample Strategies, which and make Teaching –Learning more 1. Chalk and talk 2. Animated/NPTEL videos 3. Cut sections 4. PPTs	effective	ne attainment of the various cou	irse outcomes	
	Module-1 (08 Hrs	s)		
Introduction: Conventional and	d non-conventional energy r	resources; General structure	of electrical	
power systems using single line	e diagram approach.			
Power Generation: Hydel, N		generation (Block Diagram	approach)	
DC Circuits:	delear, Solar & while power	generation (Dioek Diagram	approach).	
Ohm's Law and its limitations.	KCL & KVL, series, parall	el, series-parallel circuits.		
Simple Numerical.				
	Module-2 (08 Hrs	s)		
A.C. Fundamentals: Equation of AC Voltage and difference, average value, RMS Voltage and current relationshi Analysis of R-L, R-C, R-L-C Concept of power factor. (Simp Three Phase Circuits: Generation of Three phase A relationship between line and p	S value, form factor, peak fa p with phasor diagrams in F Series circuits.Active po- ble Numerical).	ctor. (only definitions) R, L, and C circuits. Concep wer, reactive power and a nd limitations; star and de	t of Impedance. pparent power.	
	Module-3(08 Hrs	.)		
DC Machines: DC Generator: Principle of generators.Relation between in DC Motor: Principle of opera characteristics and speed contr of DC motors. Simple numeric	operation, constructional of duced emf and terminal volt tion, back emf and its signi ol (armature & field)of DC	details, induced emf expre tage.Simple numerical. ificance. Torque equation, t	ypes of motors,	

Module-4(08 Hrs)

Transformers: Necessity of transformer, principle of operation, Types and construction of singlephase transformers, EMF equation, losses, variation of losses with respect to load. Efficiency and simple numerical.

Three-phase induction Motors: Concept of rotating magnetic field, Principle of operation, constructional features of motor, types – squirrel cage and wound rotor. Slip and its significance simple numerical.

Module-5 (08 Hrs)

Domestic Wiring: Requirements, Types of wiring: casing, capping.Two way and three way control of load.

Electricity Bill: Power rating of household appliances including air conditioners, PCs, laptops, printers, etc. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits.

Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Understand the concepts of various energy sources and Electric circuits.
CO2	Apply the basic Electrical laws to solve circuits.
CO3	Discuss the construction and operation of various Electrical Machines.
CO4	Identify suitable Electrical machine for practical implementation.
CO5	Explain the concepts of electric power transmission and distribution, electricity billing,
	circuit protective devices and personal safety measures.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

Three Tests each of 20 Marks;

• 1st, 2^{nd,} and 3rd tests shall be conducted after completion of the syllabus of 30-35%,

70-75%, and 90-100% of the course/s respectively.

 Assignments/Seminar/quiz/group discussion /field survey & report presentation/ course project/Skill development activities, suitably planned to attain the COs and POs for a total of 40 Marks.

If the nature of the courses requires assignments/Seminars/Quizzes/group discussion two evaluation components shall be conducted. If course project/field survey/skill development activities etc then the evaluation method shall be one.

Total CIE marks (out of 100 marks) shall be scaled down to 50 marks

Semester End Examination (SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books:

- 1. Basic Electrical Engineering by D C Kulshreshtha, Tata McGraw Hill, First Edition 2019.
- 2. A text book of Electrical Technology by B.L. Theraja, S Chand and Company, reprint edition 2014.

Reference Books:

- 1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Tata McGraw Hill 4th edition, 2019.
- 2. Principles of Electrical Engineering & Electronics by V. K. Mehta, Rohit Mehta, S. Chand and Company Publications, 2nd edition, 2015.
- 3. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI, 3rd edition, 2014.

•

Web links and Video Lectures (e-Resources):

• www.nptel.ac.in

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

COs and POs Mapping (Individual teacher has to fill up)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	1	1	1	1	0	0	0	1
CO2	3	3	2	1	1	1	0	0	0	0	0	1
CO3	3	2	1	1	1	1	1	1	0	0	0	1
CO4	3	2	2	1	0	1	1	1	0	0	0	1
CO5	3	1	2	0	1	2	1	1	0	0	1	1

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped